The Cohomology of Modules over a Complete Intersection Ring

نویسندگان

  • Jesse Burke
  • Srikanth B. Iyengar
چکیده

We investigate the cohomology of modules over commutative complete intersection rings. The first main result is that if M is an arbitrary module over a complete intersection ring R, and if Ext 2n R (M, M) = 0 for some n ≥ 1 then M has finite projective dimension. The second main result gives a new proof of the fact that the support variety of a Cohen-Macaulay module whose completion is indecomposable is projectively connected. iii ACKNOWLEDGMENTS First and foremost, I would like to thank my thesis advisor Srikanth B. Iyengar for his guidance and support throughout my graduate career. I would also like to thank the members of my committee, Luchezar Avramov and Mark Walker, whose help has been invaluable.

منابع مشابه

Local Cohomology with Respect to a Cohomologically Complete Intersection Pair of Ideals

Let $(R,fm,k)$ be a local Gorenstein ring of dimension $n$. Let $H_{I,J}^i(R)$ be the  local cohomology with respect to a pair of ideals $I,J$ and $c$ be the $inf{i|H_{I,J}^i(R)neq0}$. A pair of ideals $I, J$ is called cohomologically complete intersection if $H_{I,J}^i(R)=0$ for all $ineq c$. It is shown that, when $H_{I,J}^i(R)=0$ for all $ineq c$, (i) a minimal injective resolution of $H_{I,...

متن کامل

ANNIHILATOR OF LOCAL COHOMOLOGY MODULES UNDER THE RING EXTENSION R⊂R[X]

Let R be a commutative Noetherian ring, I an ideal of R and M a non-zero R-module. In this paper we calculate the extension of annihilator of local cohomology modules H^t_I(M), t≥0, under the ring extension R⊂R[X] (resp. R⊂R[[X]]). By using this extension we will present some of the faithfulness conditions of local cohomology modules, and show that if the Lynch's conjecture, i...

متن کامل

On the Associated Primes of the generalized $d$-Local Cohomology Modules

The first part of the paper is concerned to relationship between the sets of associated primes of the generalized $d$-local cohomology modules and the ordinary  generalized local cohomology  modules.  Assume that $R$ is a commutative Noetherian local ring, $M$ and $N$  are  finitely generated  $R$-modules and $d, t$ are two integers. We prove that $Ass H^t_d(M,N)=bigcup_{Iin Phi} Ass H^t_I(M,N)...

متن کامل

Tame Loci of Generalized Local Cohomology Modules

Let $M$ and $N$ be two finitely generated graded modules over a standard graded Noetherian ring $R=bigoplus_{ngeq 0} R_n$. In this paper we show that if $R_{0}$ is semi-local of dimension $leq 2$ then, the set $hbox{Ass}_{R_{0}}Big(H^{i}_{R_{+}}(M,N)_{n}Big)$ is asymptotically stable for $nrightarrow -infty$ in some special cases. Also, we study the torsion-freeness of graded generalized local ...

متن کامل

Generalized Local Homology Modules of Complexes

The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016